

SUITE 17, 808 FOREST ROAD, PEAKHURST 2210
P. 02 9046 3800 ACOUSTICS@DAYDESIGN.COM.AU WWW.DAYDESIGN.COM.AU
ABN 73 107 291 494

Impact Sound Insulation Measurement

Airstep Australia Pty Ltd Reclaimed Wild Oak with 'Timbermax' Underlay

REPORT No **6124-2.4R**

DATE ISSUED 8 November 2017

Prepared For:

Airstep Australia Pty Ltd 16 Pembury Road Minto NSW 2566

Attention: Mr Gary Tunks

Impact Sound Insulation Measurement

Revision History

Status	Date	Prepared	Checked	Comment
Draft	26/10/2017	Alexander Mendoza	Stephen Gauld	For client review
Final	08/11/2017	Alexander Mendoza	Stephen Gauld	

Document 6124-2.4R, 10 pages plus attachments

Disclaimer

The work presented in this document was carried out in accordance with the Day Design Pty Ltd Quality Management System. Day Design is certified to ISO9001.

Day Design Pty Ltd reserves all copyright of intellectual property in any or all of Day Design's documents. No permission, license or authority is granted by Day Design to any person or organisation to use any of Day Design's documents for any purpose without written consent of Day Design.

This report has been prepared for the client identified in Section 1.0 only and cannot be relied or used by any third party. Any representation, statement, opinion or advice, expressed or implied in this report is made in good faith but on the basis that Day Design is not liable (whether by reason of negligence, lack of care or otherwise) to any person for any damage or loss whatsoever which has occurred or may occur in relation to that person taking or not taking (as the case may be) action in any respect of any representation, statement, or advice referred to above.

Recommendations made in this report are intended to resolve acoustical problems only. No claims of expertise in other areas are made and no liability is accepted in respect of design or construction for issues falling outside the specialist field of acoustical engineering including but not limited to structural, fire, thermal, architectural buildability, fit for purpose, waterproofing or other aspects of building construction. Supplementary professional advice should be sought in respect of these issues.

The information in this document should not be reproduced, presented or reviewed except in full. Prior to passing onto a third party, the Client is to fully inform the third party of the specific brief and limitations associated with the commission.

Impact Sound Insulation Measurement

CONTENTS

1.0	CONSULTING BRIEF	4
2.0	TESTING SPECIFICATIONS	4
3.0	MEASUREMENT PROCEDURE	5
4.0	IMPACT SOUND INSULATION DESCRIPTOR	6
5.0	TEST SAMPLE DESCRIPTION AND RESULTS	7
	TABLES	
m 11 4		_
Tanla I	Measured Impact Sound Pressure Levels	Ω

1.0 CONSULTING BRIEF

Day Design was commissioned by Airstep Australia Pty Ltd to measure the impact sound insulation of a floor system incorporating their Reclaimed Wild Oak timber floorboards laid on top of their 'Timbermax' underlay product.

The measurements were conducted on site in accordance with Australian Standard AS/NZS ISO 140.7:2006 "Acoustics – Measurements of sound insulation in buildings and of building elements – Part 7: Field measurements of impact sound insulation of floors".

The test specimen was rated in accordance with AS ISO 717.2:2004 "Acoustics – Rating of sound insulation in buildings and of building elements – Part 2: Impact sound insulation".

2.0 TESTING SPECIFICATIONS

Location: Concrete slab floor between Unit 18 and Unit 11 of 808 Forest Road,

Peakhurst

Base Floor - 200 mm thick concrete slab

Construction: - 35 mm furring channel

- 10 mm standard plasterboard

Receiving Room Unit 11, 808 Forest Road, Peakhurst

Dimensions: Length: 5.55 m

Width: 2.86 m Height: 2.7 m

Test Samples: 14 mm thick Reclaimed Wild Oak floorboards laid on top of,

2 mm 'Timbermax' IXPE foam underlay,

Sample sizes: 14 mm thick reclaimed Wild Oak 1900 mm x 200 mm x 4 lengths

Overall sample size 1900 mm x 800 mm 2 mm thick 'Timbermax' 1000 mm x 960 mm

Test date: Friday, 6 October 2017

3.0 MEASUREMENT PROCEDURE

The impact sound insulation of a floor/ceiling system is determined by using a standard tapping machine¹ on the floor to generate impact noise and measuring the level of impact noise in the receiving room below.

The tapping machine is placed in 4 orientations as shown in Figure 1 below.

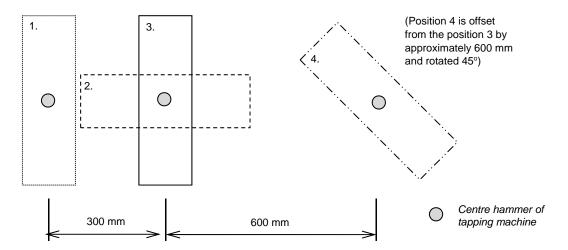


Figure 1. Tapping machine test orientations

Impact noise levels in the receiving room are measured using the microphone sweep method for a period of 30 seconds per tapping machine orientation.

A background noise level measurement is carried out to account for any noise contributions from the environment and to apply appropriate corrections if required.

Reverberation time measurements are also carried out in the receiving room. The reverberation time, T_{60} , is the time it takes for a noise source to decay by 60 dB. A "live" room, such as a reverberation room, which consist of only hard surfaces, will typically have a long reverberation time. A "dead" room, such as an anechoic chamber, which consist of highly absorptive surfaces, will have a much shorter reverberation time.

Measurement of the reverberation time in the receiving room allows the measured sound insulation to be adjusted to account for the sound energy absorbed by the room.

Impact sound insulation measurements were carried out for the base floor and the base floor with the test sample to determine the improvement the test sample had on the existing floor/ceiling system.

¹ Brüel and Kjær Tapping Machine Type 3207

4.0 IMPACT SOUND INSULATION DESCRIPTOR

The impact sound insulation performance of a system is denoted by a single value descriptor, the weighted impact sound insulation $L_{n,w}$ (for laboratory tested rating) or $L'_{nT,w}$ (for field tested rating). The single value descriptor allows for easy comparisons between different systems. The lower the number, the better the impact sound insulation performance.

The rating of the system is determined by comparing the measured noise levels in the receiving room against a set of reference values between one-third-octave band centre frequency ranges of 100 Hz to 3150 Hz, as specified in AS/NSZ ISO 717.2:2004.

5.0 TEST SAMPLE DESCRIPTION AND RESULTS

The base floor (see Section 2.0) was tested to establish a reference performance of the floor/ceiling system from which the test sample is compared to. The test sample of 14 mm Reclaimed Wild Oak timber floorboards was laid on top of the 'Timbermax' underlay and setup on top of the base floor as shown in Figure 2 below.

Figure 2. Setup of 'Timbermax' underlay with reclaimed Wild Oak floorboards.

The measured impact sound pressure levels (rounded to the nearest one-tenth decibel) are tabulated for each one-third-octave band measured and are presented in Table 1 below.

 Table 1
 Measured Impact Sound Pressure Levels

	Impact Sound Pressure Level L'nT (dB)	
1/3 Octave Band Centre Frequency (Hz)	Base Floor	Reclaimed Wild Oak + 'Timbermax'
100	56.9	53.5
125	57.8	55.1
160	61.8	60.0
200	58.8	59.8
250	55.1	56.4
315	55.2	55.3
400	56.2	55.4
500	58.0	53.5
630	60.8	49.6
800	60.6	43.0
1000	60.5	38.0
1250	60.6	34.4
1600	59.9	30.6
2000	58.4	26.5
2500	57.6	23.7
3150	61.7	23.1
4000	64.4	23.1
5000	59.4	20.0
L'nT,w	66	51

The floor/ceiling system of 14 mm thick reclaimed Wild Oak timber floorboards with the 'Timbermax' underlay laid on top of a base floor construction of 200 mm concrete slab with 35 mm furring channels and a single layer of 10 mm standard plasterboard ceiling, achieved a weighted impact sound insulation rating of $L'_{nT,w}$ of 51, improving the base floor performance by $L'_{nT,w}$ of 15 dB.

Impact Sound Insulation Measurement

Test measurements and calculations were conducted by the undersigned.

Alexander Mendoza, MDesSc (Audio & Acoustics)

Acoustic Consultant

for and on behalf of Day Design Pty Ltd

AAAC MEMBERSHIP

Day Design Pty Ltd is a member company of the Association of Australian Acoustical Consultants, and the work herein reported has been performed in accordance with the terms of membership.

APPENDICES

Appendix A – Instrumentation List

Appendix B – Test Certificates

APPENDIX A

INSTRUMENTATION LIST

Description	Model No.	Serial No.
Modular Precision Sound Analyser	B&K 2250	2690243
Condenser Microphone 0.5" diameter	B&K 4189	3022960
Acoustical Calibrator	B&K 4231	2721949
Modular Precision Sound Analyser	B&K 2270	2644584
Condenser Microphone 0.5" diameter	B&K 4189	2638722
Acoustical Calibrator	CAL200	3646
Tapping Machine	B&K 3207	2439141

All acoustic instrument systems have been laboratory calibrated using instrumentation traceable to Australian National Standards and certified within the last two years thus conforming to Australian Standards. The acoustic measurement system was also calibrated prior to and after the noise level measurements. Calibration drift was found to be less than 0.5 dB during the measurements. No adjustments for instrument drift during the measurement period were warranted.

Standardized Impact Sound Pressure Level according to ISO 140-7

Field measurements of impact sound insulation of floors

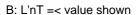
Client: Airstep Australia (NSW) Pty Ltd

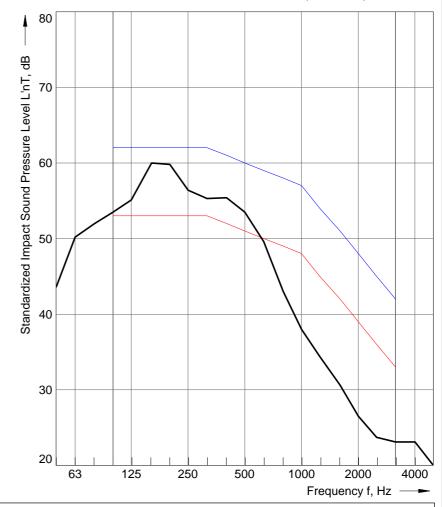
Date of test: 06/10/2017

Description and identification of the building construction and test arrangement:

Test Location: Unit 18 to Unit 11 of 808 Forest Road, Peakurst

Test Arrangement


- Reclaimed Wild Oak floorboards on top of


- Airstep 'Timbermax' underlay with base floor construction of
- 200 mm thick concrete slab
- 35 mm furring channel
- 10 mm standard plasterboard

Receiving room volume V: 42.85 m³

Frequency range according to the curve of reference values (ISO 717-2)

Frequency	L'nT	
f	1/3 Octave	
Hz	dB	
50	43.6 B	
63	50.2 B	
80	52.0	
100	53.5	
125	55.1	
160	60.0	
200	59.8	
250	56.4	
315	55.3	
400	55.4	
500	53.5	
630	49.6	
800	43.0	
1000	38.0	
1250	34.4 B	
1600	30.6 B	
2000	26.5 B	
2500	23.7 B	
3150	23.1 B	
4000	23.1	
5000	20.0 B	

Rating according to ISO 717-2

$$L'_{nT,w}(C_i) = 51 (0) dB$$

$$C_{i,50-2500} = 0 dB$$

Evaluation based on field measurement results obtained in one-third-octave bands by an engineering method

No. of test report: 4

Name of test institute: Day Design Pty Ltd

Date: 20/10/2017

Signature: