

SUITE 17, 808 FOREST ROAD, PEAKHURST 2210 ABN 73 107 291 494 P. 02 9046 3800 ACOUSTICS@DAYDESIGN.COM.AU WWW.DAYDESIGN.COM.AU

Impact Sound Insulation Measurement

Airstep Australia Pty Ltd Saranda 'Multilayer Hybrid' Flooring

> REPORT No 6603-3.2R

DATE ISSUED 12 June 2020

Prepared For: Airstep Flooring Pty Ltd 20 South Gippsland Hwy Dandenong South VIC 3175

Attention: Ms Elke Eyers

Revision History

Status	Date	Prepared	Checked	Comment
Final	12/06/2020	Ricky Thom	Stephen Gauld	For client review

Document 6603-3.2R, 10 pages plus attachments

Disclaimer

The work presented in this document was carried out in accordance with the Day Design Pty Ltd Quality Management System. Day Design is certified to ISO9001.

Day Design Pty Ltd reserves all copyright of intellectual property in any or all of Day Design's documents. No permission, license or authority is granted by Day Design to any person or organisation to use any of Day Design's documents for any purpose without written consent of Day Design.

This report has been prepared for the client identified in Section 1.0 only and cannot be relied or used by any third party. Any representation, statement, opinion or advice, expressed or implied in this report is made in good faith but on the basis that Day Design is not liable (whether by reason of negligence, lack of care or otherwise) to any person for any damage or loss whatsoever which has occurred or may occur in relation to that person taking or not taking (as the case may be) action in any respect of any representation, statement, or advice referred to above.

Recommendations made in this report are intended to resolve acoustical problems only. No claims of expertise in other areas are made and no liability is accepted in respect of design or construction for issues falling outside the specialist field of acoustical engineering including but not limited to structural, fire, thermal, architectural buildability, fit for purpose, waterproofing or other aspects of building construction. Supplementary professional advice should be sought in respect of these issues.

The information in this document should not be reproduced, presented or reviewed except in full. Prior to passing onto a third party, the Client is to fully inform the third party of the specific brief and limitations associated with the commission.

CONTENTS

1.0	CONSULTING BRIEF	4
2.0	TESTING SPECIFICATIONS	4
3.0	MEASUREMENT PROCEDURE	5
4.0	IMPACT SOUND INSULATION DESCRIPTOR	6
5.0	TEST SAMPLE DESCRIPTION AND RESULTS	7
6.0	SUMMARY OF FINDINGS	9

1.0 CONSULTING BRIEF

Day Design was commissioned by Airstep Flooring Pty Ltd to measure the impact sound insulation of a floor system incorporating their Saranda 'Multilayer Hybrid' flooring product. The measurements were conducted on site in accordance with Australian Standard AS/NZS ISO 140.7:2006 "Acoustics – Measurements of sound insulation in buildings and of building elements – Part 7: Field measurements of impact sound insulation of floors".

The test specimen was rated in accordance with AS/ISO717.2:2004 "Acoustics – Rating of sound insulation in buildings and of building elements – Part 2: Impact sound insulation".

2.0 TESTING SPECIFICATIONS

Location:	Concrete slab floor between Unit 18 and Unit 11 of 808 Forest Road, Peakhurst
Base Floor Construction:	270 mm thick concrete slab, with 110 mm waste pipe penetrating vertically through the slab. No ceiling or insulation below.
Receiving Room Dimensions:	Unit 11, 808 Forest Road, Peakhurst Room shape: Trapezoidal Length: 2.6 m Width: 5.8 m (average) Height: 2.7 m
Receiving Room Volume	40.8 m ³
Test Samples:	Saranda 'Multilayer Hybrid' flooring with solid vinyl woodgrain top layer, a centre vinyl structural layer, with a 1 mm foam underlay.
Sample sizes:	Floorboards 1220 mm x 228 mm x 4.7 mm
Test date:	Friday, 30 November 2018

3.0 MEASUREMENT PROCEDURE

The impact sound insulation of a floor/ceiling system is determined by using a standard tapping machine¹ on the floor to generate impact noise and measuring the level of impact noise in the receiving room below.

The tapping machine is placed in 4 orientations as shown in Figure 1 below.

Figure 1. Tapping machine test orientations

Impact noise levels in the receiving room are measured using the microphone sweep method for a period of 30 seconds per tapping machine orientation.

A background noise level measurement is carried out to account for any noise contributions from the environment and to apply appropriate corrections if required.

Reverberation time measurements are also carried out in the receiving room. The reverberation time, T_{60} , is the time it takes for a noise source to decay by 60 dB. A "live" room, such as a reverberation room, which consist of only hard surfaces, will typically have a long reverberation time. A "dead" room, such as an anechoic chamber, which consist of highly absorptive surfaces, will have a much shorter reverberation time.

Measurement of the reverberation time in the receiving room allows the measured sound insulation to be adjusted to account for the sound energy absorbed by the room.

Impact sound insulation measurements were carried out for the base floor and the base floor with the test sample to determine the improvement the test sample had on the existing floor/ceiling system.

¹ Brüel and Kjær Tapping Machine Type 3207

4.0 IMPACT SOUND INSULATION DESCRIPTOR

The impact sound insulation performance of a system is denoted by a single value descriptor, the weighted impact sound insulation $L_{n,w}$ (for laboratory tested rating) or $L'_{nT,w}$ (for field tested rating). The single value descriptor allows for easy comparisons between different systems. The lower the number, the better the impact sound insulation performance.

The rating of the system is determined by comparing the measured noise levels in the receiving room against a set of reference values between one-third-octave band centre frequency ranges of 100 Hz to 3150 Hz, as specified in AS/NSZ ISO 717.2:2004.

5.0 TEST SAMPLE DESCRIPTION AND RESULTS

The base floor (see Section 2.0) was tested to establish a reference performance of the floor/ceiling system from which the test sample is compared to. The test sample of 4.7 mm thick Saranda 'Multilayer Hybrid' was then placed on top of the base floor as shown in Figure 2.

Figure 2. Image of testing configuration – Saranda "Multilayer Hybrid" flooring atop the base concrete floor

Test certificates of the base floor and measured system are provided in **Appendix B** respectively as 6603-2 A001 and 6603-2 A002.

The measured impact sound pressure levels (rounded to the nearest one-tenth decibel) are tabulated for each one-third-octave band measured and are presented in Table 1.

1/2 Octave Dand	Impact Sound Pres	ΔL	
1/3 Octave Band Centre Frequency (Hz)	Base Floor	Saranda "Multilayer Hybrid" Flooring	Test Sample
100	51.0	50.1	0.9
125	55.5	54.3	1.2
160	56.4	54.1	2.3
200	56.2	54.4	1.8
250	56.3	52.4	3.9
315	56.8	49.5	7.3
400	58.4	47.2	11.2
500	58.5	41.9	16.6
630	59.2	39.4	19.8
800	60.2	40.6	19.6
1000	61.6	40.5	21.1
1250	63.1	35.3	27.8
1600	64.5	29.7	34.8
2000	65.4	24.0	41.4
2500	67.0	20.1	46.9
3150	72.9	19.2	53.7
4000	74.8	19.1	55.7
5000	69.0	15.0	54.0
	L' _{nT,w} = 73	L' _{nT,w} = 46	ΔL, _w = 27

Table 1Measured Impact Sound Pressure Levels

6.0 SUMMARY OF FINDINGS

The floor/ceiling system of the 4.7 mm thick Saranda "Multilayer Hybrid" flooring laid on top of a base floor construction consisting of a 270 mm concrete slab, with a 110 mm waste pipe penetrating vertically through the slab, achieved a weighted impact sound insulation rating of $L'_{nT,w}$ of 46, improving the base floor performance by $L'_{nT,w}$ of 27 dB.

Test measurements and calculations were conducted by the undersigned.

Juner

Ricky Thom, BA, BE(Hons)(Mech), GradIEAust Acoustical Engineer, for and on behalf of Day Design Pty Ltd

AAAC MEMBERSHIP

Day Design Pty Ltd is a member company of the Association of Australasian Acoustical Consultants, and the work herein reported has been performed in accordance with the terms of membership.

APPENDICES Appendix A – Instrumentation List Appendix B – Test Certificates

APPENDIX A

INSTRUMENTATION LIST

Description	Model No.	Serial No.
Modular Precision Sound Analyser	B&K 2270 G4	3011809
Condenser Microphone 0.5" diameter	B&K 4189	3099836
Acoustical Calibrator	B&K 4231	2721949
Tapping Machine	B&K 3207	2439141

All acoustic instrument systems have been laboratory calibrated using instrumentation traceable to Australian National Standards and certified within the last two years thus conforming to Australian Standards. The acoustic measurement system was also calibrated prior to and after the noise level measurements. Calibration drift was found to be less than 0.5 dB during the measurements. No adjustments for instrument drift during the measurement period were warranted.

